

The Language of Graphs: from Bertin to GoG to ggplot2

Michael Friendly

Psych 6135

http://euclid.psych.yorku.ca/www/psy6135/

Topics

- Idea: Graphs as visual language
 - Early attempts at standardization of graphs
- Jacques Bertin: Semiology of Graphics
 - Mapping of visual properties to data relations
- Graphics programming languages:
 - Goal: power & elegance
- Lee Wilkinson: Grammar of Graphics
- Hadlely Wickham: ggplot2

1870-1910: Statistical albums

- From ~ 1870—1910, statistical albums of official statistics on topics of population, trade, moral & political issues became widespread throughout Europe and the U.S.
 - France: Album de Statistique Graphique: 1879-1899 (trade, commerce & other topics)
 - USA: Census atlases: 1870/80/90--
 - Required by Congress to give proportional representation in the House of Representatives
 - Designed to give a "portrait of the nation"
 - Switzerland: Atlas graphique de la Suisse:1897, 1914
 - Others: Germany, Latvia, Romania, Bulgaria, etc.

36 CONSTITUENTS OF THE POPULATION OF THE GREAT CITIES : 1890

Need for standardization

- Beautiful graphics: Yes, but all separate designs
 - Can anything be compared across countries?
- Émile Cheysson (1878)
 - "The time will come when Science has to lay down general principles and decide on well-defined standards. We can no longer tolerate this sort of anarchy"
- International statistical meetings
 - 1852 (Brussels), 1857 (Vienna), 1869 (The Hague), 1872 (St. Petersburg), 1876 (Budapest) ...
 - Participants: Cheysson, Levasseur (France), Ernest Engel, Gustav von Mayr, Hans Schwabe (Germany), Francis Walker (U.S.), ...

Cheysson

Levasseur

von Mayr

Walker

No consensus

- St. Petersburg (1872) resolutions:
 - "The Congress accepts that it is not worth going into details about the choice of methods or facts for graphical representation".
 - "no strict rule can be imposed on authors, because the only real problem is that of applying the graphical method to data that is comparable".
- Most of the debate had to do with thematic maps
 - number of class intervals for a quantitative variable
 - number and variety of shading colors
- Yet, the idea of a visual language had been accepted, along with the need for some theory of graphs

Bertin: Semiology of graphics (1967)

- Defines a system of "grammatical elements" of graphs and relations among visual attributes that give meaning (semantics) from perceptual features
 - Planar variables: (x,y) coordinates
 - Retinal variables: shape, size, color, ...

PLANAR VARIABLES	RETINAL VARIABLES			
Horizontal	Shape	Size	Colour	
Position ←──→	$\Box\Box\Delta$	\odot_{00}	🕶 😁 😁	
Vertical 🛉	Value	Orientation	Texture	
	Ler Photos (High	" "	$\bigcirc \bigcirc $	

Bertin: Semiology of graphics

- Defines a system of mapping of retinal variables to properties of data variables for perception of relations
 - Association (≡) marks are perceived as similar
 - Selection (≠) marks are perceived as forming classes
 - Order (O) marks are perceived as showing order
 - Quantity (Q) marks are perceived as proportional
- This is the first theory of graphs relating visual attributes (encoding) to perceptual characteristics (decoding).
- It comprises nearly all known graph and thematic map types in a general system

The retinal variables and relationship types can be implanted in various symbol types in the plane (X,Y)

Visual variables & data characteristics

Visual variables differ in the kinds of information they can convey

		Characteristics				
		Selective	Associative	Quantitative	Order	Length
	Position	•	•; ;•	1	1	Theoretically Infinite
SS	Size	• •	•••		●>●>●>●	Selection: ~5 Distinction: ~20
iable	Shape					Theoretically Infinite
Var	Value	⁰●⁰⁰⁰₀⁰			O <o<0<0<●<●<</o<	Selection: <7 Distinction: ~10
isual	Color	•	•••••••			Selection: <7 Distinction: ~10
>	Orientation	$\overline{)}$				Theoretically Infinite
	Texture		0000			Theoretically Infinite
		(≠)	(≡)	(Q)	(0)	

Some recommendations

Various authors have used Bertin's system to make recommendations for the best attributes to use with different symbol types

Making graphs: menus vs. syntax

Menu-driven graphics provide a wide range of graph types, with options What's wrong with that?

WYSIAYG: What you see is **all** you get. No way to do something different Not reproducible: Change the data \rightarrow Re-do manually from scratch Often designed by programmers with little sense of data vis

Programming languages: Power & elegance

- CS view: All programming languages can be proved to be equivalent (to a Turing machine)
- **Cognitive view**: Languages differ in:
 - expressive power: ease of translating what you want to do into the results you want
 - elegance: how well does the code provide a humanreadable description of what is done?
 - extensibility: ease of generalizing a method to wider scope
 - learn-ability: your learning curve (rate, asymptote)

한 diamondPricing.R* × 한 formatPlot.R × diamonds ×	Diamond Pricing
<pre>> Source on Save</pre>	Price 10000 Price 10000

Programming languages: Power & elegance

Language	Features:Tools for thinking?
FORTRAN	Subroutines – reusable code
	Subroutine libraries (e.g., BLAS)
APL,	N-way arrays, nested arrays
APL2STAT	Generalized reduction, outer product
	Function operators
Logo	Turtle graphics
0	Recursion, list processing
Lisp, LispStat,	Object-oriented computing
ViSta	Functional programming
Perl	Regular expressions
	Search, match, transform, apply
SAS	Data steps, PROC steps, BY processing
	SAS macros, Output Delivery system
R	Object-oriented methods, tidyverse: dplyr, ggplot2,

Graphics programming languages: SAS

- SAS: procedures + annotate facility + macros
 - PROC GPLOT (x,y plots), PROC GCHART, PROC GMAP, ...
 - Annotate: data set with instructions (move, draw, text, fonts, colors)
 - Macros: Create a new, generic plot type, combining PROC steps and DATA steps.

Wilkinson: Grammar of Graphics

- Natural language:
 - Grammar/syntax: What are the minimal, complete set of rules to describe all well-formed sentences?
 - John ate the big red apple
 - John big apple red apple ate the
 - Semantics: How to distinguish meaning, nonsense, poetry in well-formed sentences?
 - Large green trucks carry garbage
 - Colorless green ideas sleep furiously
- How to apply these ideas to graphics?
 - Grammar: Algebra, scales, statistics, geometry, ...
 - Semantics: Space, time, uncertainty, ...
 - Needed: a complete formal theory of graphs & computational graphics language

Wilkinson: Grammar of Graphics

- A complete system, describing the components of graphs and how they combine to produce a finished graphic
 - "The grammar of graphics takes us beyond a limited set of charts (words) to an almost unlimited world of graphical forms (statements)" (Wilkinson, 2005, p. 1).
 - "… describes the meaning of what we do when we construct statistical graphics … more than a taxonomy"
 - "This system is capable of producing some hideous graphics … This system cannot produce a meaningless graphic, however."
- This is a general theory for producing graphs.
 - the foundation of most modern software systems;
 - not connected with a theory for reading graphs à la Bertin.

Grammar of Graphics: Specification

- Algebra: combine variables into a data set to be plotted
 - cross (A*B), nest (A/B), blend (A+B), filter, subset, ...
- Scales: how variables are represented
 - categorical, linear, log, power, logit, ...
- Statistics: computations on the data
 - binning, summary (mean, median, sd), region (CI), smoothing

Grammar of Graphics: Specification

- **Geometry**: Creation of geometric objects from variables
 - Functions: point, line, area, interval, path, ...
 - Partitions: polygon, contour,
 - Networks: edge
 - Collision modifiers: stack, dodge, jitter
- **Coordinates**: Coordinate system for plotting
 - transformations: translation, rotation, dilation, shear, projection
 - mappings: Cartesian, polar, map projections, warping, Barycentric
 - 3D+: spherical, cylindrical, dimension reduction (MDS, SVD, PCA)

Grammar of Graphics: Specification

- Aesthetics: mapping of qualitative and quantitative scales to sensory attributes (extends Bertin)
 - Form: position, size, shape (polygon, glyph, image), rotation, ...
 - Surface: color (hue, saturation, brightness), texture (pattern, orientation), blur, transparency
 - Motion: direction, speed, acceleration
 - Sound: tone, volume, rhythm, voice, ...
 - Text: label, font, size, ...
- Facets: Construct multiplots ("small multiples") by partitioning, blending or nesting
- Guides: Allow for reading the encodings of variables mapped to aesthetics
 - scales: axes, legend (labels: size, shape, color, ...)
 - annotations (title, footnote, line, arrow, ellipse, text, ...)

Wickham: ggplot2

- ggplot2: Elegant graphics for data analysis
 - a computational language for thinking about & constructing graphs
 - sensible, aesthetically pleasing defaults
 - + themes: default, bw, journal, tufte, ...
 - infinitely extendable
 - ggplot extensions: <u>http://www.ggplot2-</u> <u>exts.org/</u>

	Use R!
Hadley Wickham	
ggplot2	
Elegant Graphics for Data Analysis	
🙆 Springer	

Wickham: ggplot2

- Implementation of GoG in R as layers of a graphic
 - Basic layers:
 - Data,
 - Aesthetics (data ightarrow plot mapping)
 - Geoms (points, lines, bars, ...),
 - Statistics: summaries & models
 - Coordinates: plotting space
 - Facets: partition into sub-plots
 - Themes: define the general features of all graphical elements

ggplot2: data + geom = graph

- Every graph can be described as a combination of independent building blocks, connected by "+" (read: "and")
 - data: a data frame: quantitative, categorical; local or data base query
 - aesthetic mapping of variables into visual properties: size, color, x, y
 - geometric objects ("geom"): points, lines, areas, arrows, …
 - coordinate system ("coord"): Cartesian, log, polar, map,

ggplot2: data + geom = graph

ggplot(data=mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) + geom_point(size=3)

In this call:

- data=mtcars: data frame
- aes(x=, y=): plot X,Y variables
- aes(color=, shape=): attributes
- + geom_point(): what to plot
- the coordinate system is taken to be the standard Cartesian (x,y)
- a corresponding legend is automatically generated

ggplot2: geoms

Wow! I can really see something there.

How can I enhance this visualization?

Easy: add a geom_smooth() to fit linear regressions for each level of cyl

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
geom_point(size=3) +
geom_smooth(method="Im", aes(fill=cyl))

ggplot2: GoG -> graphic language

- The implementation of GoG ideas in ggplot2 for R created a more expressive language for data graphs
 - layers: graph elements combined with "+" (read: "and")

ggplot(mtcars, aes(x=hp, y=mpg)) + geom_point(aes(color = cyl)) + geom_smooth(method ="lm") +

themes: change graphic elements consistently

ggplot2: more geoms

Continuous X, Continuous Y

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE)
x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust
e + geom_jitter(height = 2, width = 2)
x, y, alpha, color, fill, shape, size

e + geom_point()

x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile()

x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl") x, y, alpha, color, linetype, size

e + geom_smooth(method = lm)
x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust ggplot2 facilitates graphical thinking by making a clear separation among:

- mapping data variables to plot features (aes());
- geometric objects (geom_())
- statistical summaries (stat_())

A larger view: Data science

- Data science treats statistics & data visualization as parts of a larger process
 - Data import: text files, data bases, web scraping, ...
 - Data cleaning → "tidy data"
 - Model building & visualization
 - Reproducible report writing

The tidyverse of R packages

Summary

- Graphical developers in the Golden Age recognized the idea of "graphic language," but could not define it.
- Bertin first formalized the relations between graphical features ("retinal variables"), data attributes (O, Q, ≠, ≡), and "reading levels"
- Wilkinson, in GoG, created a comprehensive syntax and algebra to define any graph
- Wickham, in ggplot2, created an expressive language to ease the translation of graphic ideas into plots.